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Abstract

Optical coherence tomography angiog-

raphy (OCTA), as a functional exten-

sion of optical coherence tomography

(OCT), has exhibited a great potential

to aid in clinical diagnostics. Currently,

OCTA still suffers from motion artifact

and noise. Therefore, in this article, we

propose to implement compressive sensing (CS) on B-scans to reduce motion arti-

fact by increasing B-scan rate. Meanwhile, a noise reduction filter is specially

designed by combining CS, Gaussian filter and median filter. Specially, CS filtering

is realized by averaging multiple CS repetitions on en-face OCTA images with var-

ied sampling functions. The method is evaluated on in vivo OCTA images of

human skin. The results show that vasculature structures can be reconstructed

well through CS on B-scans with a sampling rate of 70%. Moreover, the noise can

be significantly eliminated by the developed filter. This implies that our method

has a good potential to expedite OCTA imaging and improve the image quality.
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1 | INTRODUCTION

Optical coherence tomography (OCT) is a newly devel-
oped optical imaging technique that can achieve high-
resolution tomographic imaging of biological tissues [1].

In recent years, it has been widely accepted as a diagnos-
tic tool for ophthalmic diseases in clinic. Optical coher-
ence tomography angiography (OCTA), as an important
functional extension of OCT, can produce three-dimen-
sional vasculature image of human tissue and has found
good applications in ophthalmology and dermatology [2–
8]. OCTA utilizes the blood cell motion as the imaging
contrast and vasculature structures are selectively imaged
by analyzing the dynamic amplitude or phase informa-
tion of OCT signals acquired consecutively at the same
location of tissues [7, 9, 10]. Since no exogenous contrast
agent is needed, OCTA is noninvasive [11]. In contrast,
the current prevailing clinical angiography technique-
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fluorescence angiography requires the use of extraneous
fluorescent agent. Moreover, OCTA has the potential to
perform velocity measurement of blood flow which is
diagnostically useful [12].

At present, OCTA can be categorized into two types:
phase-based and amplitude-based. The phase-based
methods include Doppler OCT (D-OCT) and phase-vari-
ance OCT (PV-OCT) [10, 13]. The amplitude-based
methods include amplitude-decorrelation OCT (AD-
OCT) and speckle-variance OCT (SV-OCT) [7, 14]. Obvi-
ously, PV-OCT, AD-OCT and SV-OCT require multiple
A-scans at the same location in the tissue, resulting in a
longer imaging time. This will cause more occurrence of
motion-induced artifact. Specifically, a sudden motion of
tissue will cause the entire tissue to behave like a blood
motion during the OCTA process and as a result, the ves-
sels will be broken in OCTA image [15]. The entire
OCTA B-scan appears to be bright which turns out to be
white stripes in en-face OCTA images [16]. This further
leads to challenges in analyzing vasculature image and
extracting diagnostic features accurately [15, 17]. For
example, the white stripes are likely to be segmented as
blood vessels when performing vessel segmentation for
quantitative analysis of tissue vasculature structure. To
avoid or reduce the motion-induced artifacts, high-speed
CMOS cameras/spectrometer for SD-OCT and high-speed
wavelength-swept light sources for SS-OCT are developed
to expedite OCT A-scan [18–20].Among high-speed OCT
solutions, OCT with the use of Fourier-domain mode-
lacked (FDML) lasers have shown to be able to achieve
the fastest A-scan rate up to 3.35 MHz at 1060 nm [21].
However, this method is costly and pay the price of a
reduced signal-to-noise ratio (SNR) due to the reduced
integration time of the detector corresponding to the A-
scan rate. Another solution for the motion artifact in oph-
thalmology is eye tracking technique, which however will
complicate the whole system and increase the system
cost. Lastly, software motion correction has been pro-
posed to eliminate the motion artifact in postprocessing
[2, 15]. However, this may sacrifice the valid field of view.

In addition, another issue needs to be addressed for
OCTA imaging is the noise due to multiple scattering
and speckle effects. More specifically, those noises cause
the amplitude decorrelation of static tissue to be nonzero
which smears the contrast of blood motion against the
background in OCTA image. As a result, this may
degrade the performance of vessel segmentation and
eventually reduce the accuracy of quantitative analysis
on vessels. In addition, the noise inside the vessel body
may destroy the internal connectivity of the blood vessel
(vascular fragmentation) which makes an accurate judg-
ment on the vasculature structure more difficult for

clinicians. Thus, noise removal has received many
research efforts in OCTA field. Digital filters are generally
used to improve the image quality [22–24]. Buades et al.
proposed a nonlocal means filter to reduce noise while
preserving image details [25]. Lee et al. used Hessian
analysis-based shape filter for OCTA flow contrast
enhancement [26]. Oliveira et al. combined matched fil-
ter, Frangi's filter and Gabor wavelet filter to enhance the
images [27]. Liu et al. utilized gamma transformation to
enhance the image and then used combined collaborative
filter and shock filter to smooth and sharpen the
image [28]. Although digital filters achieve good results
in image denoising, they face the challenge of preserving
edges while reducing the noise [29].

Thus, in this study, we propose to use compressive-
sensing (CS) technique to increase the OCTA imaging
speed as well as to reduce the noise. To the best of our
knowledge, CS technique has been introduced to OCT,
and however not applied to OCTA yet. In principle, CS
can achieve an image reconstruction with a high fidelity
under a sub-Nyquist sampling if the object has a sparse
representation. This under-sampling process can effec-
tively reduce the measurement time as well as the
amount of data [30]. In recent years, CS has been widely
studied and applied to synthetic aperture radar (SAR)
imaging, magnetic resonance imaging (MRI), OCT and
so on [31–36]. In theory, CS can not only reduce the
amount of data but also denoise since the small coeffi-
cients are suppressed in the process of reconstruction [37,
38]. For example, Xu et al. proposed modified CS-based
averaging method to increase the image quality [39].
Later, Leportier et al. used a combination of CS with
other filters to reduce noise [29]. Luo et al. demonstrated
that five times CS averaging method offers an image
quality and depth resolution similar to those obtained
using the conventional averaging method [34]. As com-
pared with those conventional noise reduction filters, CS-
based denoising exhibits an advantage of better preserv-
ing the sharpness of the image during denoising process
[29]. In this paper, we aimed to improve the OCTA image
quality by combining CS with the traditional digital
filters.

The principle of our method is to conduct CS on B-
scans to increase the acquisition speed by reducing the
amount of image data to be measured. Afterward, a CS
filter is developed for noise reduction by averaging multi-
ple en-face OCTA images which are generated by repeat-
ing CS on en-face images with varied sampling functions.
Finally, two filters, that is, Gaussian filter and median
filter, are implemented to further denoise the image.
This method is evaluated on in vivo OCTA image of
human skin.
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2 | MATERIALS AND METHODS

2.1 | SS-OCTA imaging system

In this work, a swept-source OCT (SS-OCT) was built in
lab for in vivo clinical measurement. The study was
approved by the Human Research Ethics Committee of
the First Affiliated Hospital of Soochow University
(Suzhou, China), and the research was conducted with
the principles embodied in the Declaration of Helsinki
and in accordance with local statutory requirements. As
shown in Figure 1A, the system works based on Michel-
son interferometer. The light source's output (SS-OCT
1060, Axsun Technology Inc, Billerica, MA) sweeps
around 1060 nm with a bandwidth of about 110 nm at
100 kHz. The output light is split into two parts by a
50/50 fiber coupler, entering the reference arm and the
sample arm, respectively. The reference arm consists of a
pair of collimators and a pair of mirrors which are used
to build a one-way light propagation path. The sampling
arm is constructed with a collimating lens (F280APC-
1064, Thorlabs, Newtown, NJ), a scanning galvanometer
(GVSM002/M, Thorlabs, Newtown, NJ), an achromatic
lens (AC254-060-B-ML, Thorlabs, Newtown, NJ) and an
optical glass window (WG10530-B, Thorlabs, Newtown,
NJ). The backscattered light reflected from the two arms
interferes at a 50/50 fiber coupler, and the interference
signal is detected by a balanced detector (PDB471C,
Thorlabs, Newtown, NJ) and passes through a low-pass
filter (SLP-150+, Mini-circuits, Brooklyn, NY) which

filters out the signal with a frequency higher than
155 MHz, and eventually is recorded in the computer
through a 12-bit dual-channel data acquisition card
(ATS9351, Alazartech, Austin, TX). The scanning of B-
scan is realized by a 16-bit high-speed analog output
device (PCIe-6363, National Instruments, Austin, TX)
outputting the analog signal to drive the galvanometer.
To ease the clinical measurement, a handheld probe is
fabricated by three-dimensional printing as described in
Figure 1B. The axial and lateral resolutions of the system
in air are approximately 11 and 20 μm, and the imaging
depth in air is approximately 3.78 mm.

At present, we have not implemented random sam-
pling into OCT beam scanning and thus a virtual random
sampling is carried out on the full-sampled image in post-
processing as illustrated in Figure 2. First, the SS-OCTA
imaging system conducts a complete OCTA measure-
ment, including three repeated OCT B-scans at the same
position. Then, three cross-sectional intensity images are
produced by the inverse fast Fourier transform. Subse-
quently, speckle variance is calculated over these three
intensity images to obtain an OCTA B-scan. Next, a ran-
dom mask is generated in computer according to the pre-
set sampling rate to simulate the random sampling of an
OCTA B-scan along the lateral dimension to obtain an
under-sampled OCTA B-scan. For example, to under-
sample an image with a rate of 70%, the computer will
create a two-dimensional matrix with the same size as
the image, of which 70% of the columns are set to be one
and the rest to be zero. Moreover, the columns with the

FIGURE 1 (A) Schematic of the swept-source OCTA imaging system. (B) Mechanical drawing of the handheld OCT probe. BD,

balanced photodetector; CL, collimator; FC, fiber coupler; GS, galvo scanner; L, lens; M, mirror; S, sample; SS, swept source
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value of zero are distributed randomly along the lateral
dimension. Then, the image is multiplied with the mask
and in the resulted image, the columns filled with the
element of zero are deleted to produce the under-sampled
image. It should be noted that each column (A-scan) in
OCT B-scan or OCTA B-scan is irrelevant throughout the
processing, and it is reasonable to simulate the random
sampling along the fast axis.

2.2 | B-scan compressive sensing

In OCTA imaging, one B-scan consists of N A-scans with
a size of N � 1, and one C-scan consists of N B-scans
with a size of N � N. Random sampling is conducted
along the fast-scanning axis for each B-scan and the
amount of A-scan in each B-scan is reduced from N to M.
Let y represent randomly sampled observations whose
size is M � 1 in the horizontal direction, and x represent
the expected B-scan data whose size is N � 1 in the hori-
zontal direction. Implementing compressive sensing
requires data to be sparse and so the data can be trans-
formed into the sparse domain. Let x = ψs, where ψ is a
sparse basis matrix and s is a sparse coefficient (Figure 3).
Then, the process of compressive-sensing reconstruction
can be expressed as:

Minmize sk k1subject to ϕψs� yk k2 < ε ð1Þ

where ϕ is the observation matrix representing the ran-
dom sampling function. The observation matrix ϕ and
the sparse basis matrix ψ strictly satisfy the restricted iso-
metric property [40]. ε is used to control the truncation
error of image reconstruction, which is related to the
noise of the image. The larger the value, the better the

denoising effect but the worse the quality of the
reconstructed blood vessels. In general, it is necessary to
find a suitable value to compromise between the data
reduction and the image detail preservation. The notation
mk k1 and mk k2 are the l1 and l2 norms respectively.
The sparse basis matrix ψ often adopts wavelet trans-

form matrix and Fourier matrix. It has been found that
the image reconstructed by wavelet transform is sharper
while the image reconstructed by Fourier transform is
smoother [41]. To keep the edges of the blood vessels
well, wavelet transform matrix is used for image recon-
struction in this study. Various methods have been pro-
posed to solve Equation (1) such as basis pursuit (BP),
iterative hard thresholding (IHT), and orthogonal
matching pursuit (OMP) [40, 42, 43]. Among those
methods, OMP algorithm exhibits a quick converge as
the residuals are always orthogonal to the selected atoms.
Considering OCTA imaging requires a large amount of
data, to have a time cost-effective image reconstruction,
OMP algorithm is employed to solve Equation (1). The
reconstruction process is repeated for each row of the
under-sampled B-scan to get the full reconstructed B-scan
image.

Since only part of the data is used in random sam-
pling, in theory, CS is capable of increasing the OCTA
imaging speed. At the same time, due to the minimiza-
tion of the l1 norm in the reconstruction process, many
small coefficients are suppressed which can help reduce
the noise in the reconstructed image.

2.3 | Denoising algorithm

As discussed above, CS has the capability of denoising.
Thus, a denoising algorithm is designed by combining CS

FIGURE 2 Flowchart of the computer simulation of random sampling
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filter with Gaussian filter and median filter, called CGM
filter, dedicated to reducing the noise in en-face OCTA
image. It consists of three steps as illustrated in Figure 4.
First, CS implementation is repeated multiple times with
varied random sampling functions along slow axis on en-
face OCTA image. CS is applied to all the columns with
the same sampling function (random mask) as shown in
Figure 4.This random sampling process is similar as
described in Section 2.1. The difference is that the ran-
dom sampling is performed along the slow axis for CS fil-
ter while along the fast axis for B-scan CS. Note that the
reason why the sampling is along the slow axis is that
this may eliminate the row stripe due to background
motion. In detail, if the motion-induced artificial lines
are partially sampled or even not sampled, they will have

a small probability to be recovered in the reconstruction.
Second, the images reconstructed with different random
sampling functions are averaged to create a new image
with reduced noise. The process is defined as CS filter.
The resulted noise reduction can be explained by the fact
that different random sampling function results in an
uncorrelated noise distribution in the reconstructed
image.

Next, to further enhance the SNR of the OCTA image,
two conventional filters, that is, Gaussian filter and
median filter are applied to the images after CS filtering.
Gaussian filter realizes a noise reduction by convoluting
a Gaussian function with the image and has been widely
used in image processing. It can smooth out the noise,
and however, the vanishing of edges will be an issue

FIGURE 3 Schematic diagram

of compressive sensing. x, y and

s represent the expected value, the

observed value and the sparse

coefficient, respectively. ϕ represents

the observation matrix, which

projects the high-dimensional signal

x to the low-latitude space. ψ is the

sparse base matrix, which can

sparsely represent the expected value

x to obtain the sparse coefficient s

FIGURE 4 Flowchart of CGM filter process
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when large variance is used in the filter function [44].
Median filter is a nonlinear filter process which replaces
the value of the targeted pixel with the median of all pixel
values in the preset window. It can preserve the edge when
reducing noise, especially impulse noise [45]. For OCTA
image, if it is applied to the original en-face OCTA images
before CS filtering, it may cause a thinning of the blood ves-
sels which will decrease the accuracy of the quantitative
analysis on the vasculature structures. Therefore, Gaussian
filter and median filter are implemented in sequence fol-
lowing CS filtering. Gaussian filter can improve the connec-
tivity of the blood vessels (black spots inside vessels are
significantly reduced). The improved connectivity of the
blood vessel can effectively prevent the fragmented blood
vessel edges from being removed by the subsequent imple-
mentation of median filter.

2.4 | Evaluation metrics

In this study, we used four metrics to evaluate the image
quality, including contrast-to-noise ratio (CNR), equiva-
lent numbers of looks (ENL), signal-to-noise ratio (SNR)
and local contrast (LC) [29, 38, 39]. They are defined as
follows:

CNR¼ 20� log10
μo�μb
σb

ð2Þ

ENL¼ μb
2=σb

2 ð3Þ

SNR¼ 20� log10
μo
σb

ð4Þ

LC¼ μo=μb ð5Þ

where μo is the mean gray value of the vessel area, μb is
the mean gray value of the background area, σb is the
standard deviation of the background's gray value, CNR
and LC reflect the contrast of blood vessels in the image
(the degree of visualization of blood vessels), ENL can
measure the smoothness of a uniform area, which is used
to reflect the smoothness of the background and SNR is
used to measure the denoising effect.

3 | RESULTS AND DISCUSSION

3.1 | Data reduction

This study is to explore the feasibility of utilizing CS to
increase the imaging rate of OCTA by reconstructing the
image based on under-sampled data. However, as the

sampling rate decreases, the correlation of the
reconstructed image with the image obtained by full sam-
pling gets lower. Thus, a comprise must be made between
the sampling rate and the correlation above.

To determine the optimal sampling rate, the CS-
reconstructed images with a sampling rate of from 30% to
90% with a step size of 10% are evaluated as described in
Figure 5. The CS is implemented on B-scans and then the
en-face image is created by single-pixel projection at a cer-
tain depth. The image was acquired from the chest of a
young female patient who underwent a laser scar removal
surgery. For the sampling rate of 30%, it is hard to recognize
the vessel morphological structure in the reconstructed
image (Figure 5A), that is, the junctions of the vessels in the
red rectangle. When the sampling rate is increased from
30% to 70%, the visualization of the vessel structure is signif-
icantly improved. Similar observation can be obtained in
the OCTA B-scan as seen in Figure 6. In addition, when the
sampling rate is further increased from 70%, the improve-
ment on the vessel integrity in the reconstructed image
becomes subtle and hardly recognizable. Besides, it is found
that in those non-vessel areas, the image reconstructed with
the sampling rate above 70% shows less noise as compared
with the full-sampled image. This can be explained by the
denoising capability of CS.

To quantify the performance of CS with various sam-
pling rates, the correlation coefficient of the reconstructed
image with the full-sampled image was calculated on both
OCTA B-scans and en-face images as depicted in Figure 7
which can reflect the accuracy of the image reconstruction
by CS. Overall, the increase of the sampling rate is accom-
panied with an increase of the correlation coefficient, which
behaves like a logarithmic function. The correlation coeffi-
cient is elevated approximately from 0.5 to 0.78 when the
sampling rate is increased from 30% to 70%. The
corresponding reconstructed vessels with a sampling rate of
70% look almost identical to that in the full-sampled image.
This means that the correlation coefficient of 0.78 can effec-
tively reflect a good CS reconstruction quality of sparse ves-
sels. In addition, the correlation function for B-scans
exhibits a larger fluctuation than that for en-face image,
especially at low sampling rate. This can be accounted for
by the fact that in each B-scan, the vessel area takes up a
smaller portion of the entire image and the noise (non-ves-
sel area) makes more contribution to the correlation calcu-
lation as compared with the en-face image.

3.2 | Noise reduction

Noise reduction based on CS has been introduced to OCT
[34]. It should be noted that the sampling process is a
random function. Thus, for each repetition of the CS-

6 of 12 WANG ET AL.



reconstruction based on different random sampling func-
tion, the noise exhibits a different distribution. This will
enable a noise reduction through averaging multiple rep-
etitions. In this study, this CS-based noise reduction is
implemented on en-face image. The performance of this
CS filter is mainly dependent on the sampling rate and

the number of repetitions to be averaged, which therefore
need to be optimized.

In theory, the sampling rate impacts the reconstructed
image from two aspects. One is that the reconstructed
image correlates better with the full-sampled image when a
higher sampling rate is used. From this point of view, a

FIGURE 5 En-face OCTA images at different sampling rates, (A–G) are the en-face OCTA images when the sampling rate is from 30%

to 90% with a step size of 10%, (H) is the fully sampled en-face OCTA image

FIGURE 6 OCTA B-scan images at different sampling rates, (A–G) are the OCTA B-scan images when the sampling rate is from 30% to

90% with a step size of 10%, (H) is the fully sampled OCTA B-scan image. This B-scan is along the blue dashed line in Figure 5A
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high sampling rate is desired. On the other hand, noise dis-
tribution varies more among repeated reconstructions with
a lower sampling rate. Apparently, with a larger noise distri-
bution variation, averaging multiple repetitions will yield a
larger noise reduction. In practice, the reconstructed image
quality is preferentially used to determine the minimal sam-
pling rate. For an en-face OCTA image with a sparse vascu-
lature structure, the non-sampled vessel will have a larger
probability to be missed in the reconstructed image when

the sampling rate is decreased. To obtain an acceptable low
sampling rate, the images reconstructed with an en-face
sampling rate from 30% to 90% with a step size of 10% were
evaluated. The correlation between each reconstruction and
the full-sampled image was calculated and for each sam-
pling rate, the reconstruction was repeated five times and
consequently five correlation coefficients will be produced
and eventually averaged. The mean correlation coefficients
are 0.34, 0.39, 0.47, 0.55, 0.62, 0.72 and 0.85 for the sampling
rates of 30% to 90% with a step size of 10%, respectively. It
needs to be pointed out that the correlation coefficient
is computed over the entire image including both vessels
and background (non-vessel area). Thus, when only consid-
ering the vessels, a sampling rate of 70% is high enough to
obtain a good reconstruction of vessels and therefore is
adopted as the en-face sampling rate for the following noise
reduction work.

Next, the optimal number of reconstruction repeti-
tions for averaging is experimentally determined. Figure 8
describes the images generated by averaging one to seven
repetitions. It is observed that upon one CS reconstruc-
tion, the image exhibits a smoother background than the
full-sampled image. The corresponding SNR is improved
from 21.75 dB to 22.12 dB. This demonstrates the noise-
filtering capability of CS reconstruction. The background
area gets smoother when averaging two and three
repeated reconstructions. The SNR is further improved to
23.54 and 24.32 dB. However, it is hard to recognize thatFIGURE 7 Correlation coefficients at different sampling rates

FIGURE 8 (A) En-face OCTA image with a sampling rate of 100%. (B–H) are the images generated by averaging the repeated CS-

reconstructed images with an en-face sampling rate of 70%. The corresponding number of repetitions is from one to seven, respectively. The

SNRs of (A–H) are 21.75, 22.12, 23.54, 24.32, 24.46, 24.32, 24.21 and 24.49, respectively
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the background becomes smoother when the number of
the repeated reconstructions for averaging continues to
be increased. The SNR seems to be stabilized around
23.3 dB. This indicates that averaging three repeated
reconstructions can provide an optimal compromise
between noise reduction and computation cost and there-
fore will be used for the following CGM filter process.

As shown in Figure 8, although the background is
smoothed by CS filtering, the vessel body remains noisy,
and its edge is not sharp. Consequently, Gaussian filter
and median filter are applied to improve the quality of

vessel image. The images resulted from CS filtering,
Gaussian filtering and median filtering are described in
Figure 9B–D, respectively. It is obvious that Gaussian fil-
ter performs best on noise reduction while CS filtering is
the worst. Median filter achieves a good elimination of
the horizontal thin lines. To better evaluate the perfor-
mance of the noise reduction, an intensity profile was
plotted as an example in the bottom right corner of each
figure. Next, these three filters mentioned above are com-
bined in all four possible ways to further reduce the noise
as illustrated in Figure 9E–H. It is seen that combining

FIGURE 9 Evaluation of noise reduction by various filters and their combinations: (A) en-face image constructed with CS-

reconstructed B-scans. (B–H) various filters performed on (A), including (B)-CS filter, (C)-Gaussian filter, (D)-median filter, (E)-combined CS

filter and Gaussian filter, (F)-combined CS filter and median filter, (G)-combined Gaussian filter and median filter, and (H)-combination of

all the three filters above (CGM filter). Note that the sampling rate of CS reconstruction is 70% both for B-scan and en-face image. CS filter is

an average of three repetitions of CS-reconstruction on en-face image. The bottom right corner of each image is the intensity profile of the

blood vessel marked by the blue dashed line in (A) and its abscissa range is 221 to 280 pixels and ordinate range is 0–50

TABLE 1 Evaluation metrics of figures A–H in Figure 9

Method CNR (dB) ENL SNR (dB) LC

No filter 19.23 0.71 20.00 11.84

CS filter 23.32 1.74 24.07 12.10

Gaussian filter 24.76 2.71 25.55 11.52

Median filter 25.72 7.12 26.84 8.24

CS filter + Gaussian filter 26.99 4.34 27.76 11.74

CS filter + Median filter 26.52 6.55 27.51 9.27

Gaussian filter + Median filter 26.96 5.17 27.80 10.80

CS filter + Gaussian filter + Median filter (CGM) 27.83 6.19 28.66 10.90
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two of those three filters can make the intensity profile to
be single-peak shape and smoother. As for the combina-
tion of all the three filters, little significant improvement
can be observed on the intensity profile. Therefore, four
metrics, including CNR, ENL, SNR and LC are computed
to quantify the performance of the methods depicted in
Figure 9 as summarized in Table 1. CGM filter yields the
highest CNR, SNR and the third highest ENL (choose the
blood vessels in the red rectangle as the signal and the
area in the green rectangle as the noise to calculate the
metrics). As for LC, although CGM filter is inferior to
any individual use of those three filters, it is superior to
combination of CS filter and median filter, and combina-
tion of Gaussian filter and median filter. Overall, it is rea-
sonable to consider CMG filter as the optimal one.

From the discussion above, the processing protocol of
our proposed method is finalized as: A, CS reconstruction
with a sampling rate of 70% on each B-scan. B, Imple-
mentation of CS filter with a sampling rate of 70%,
Gaussian filter and median filter in sequence on en-face
OCTA images. To further demonstrate the robustness of
this method, it was tested on two OCTA images acquired

from two different parts of human skin in vivo, including
the ear and the cheek of a patient who underwent a burn
injury. Figure 10A, D depict the raw en-face OCTA
images. The corresponding images produced exclusively
from CS reconstruction on each B-scan are presented in
Figure 10B, E. The vessel structures are well reconstru-
cted, indicating that CS reconstruction on B-scans can
reduce the size of original data without losing the object's
structure. The image quality is then improved signifi-
cantly by CGM filter as illustrated in Figure 10C, F, espe-
cially in terms of SNR and image contrast, demonstrating
the efficacy of CGM filter.

4 | CONCLUSION

In this article, we proposed a new technique based on CS
dedicated to accelerating OCTA imaging as well as improv-
ing the image quality. To the best of our knowledge, this is
the first application of CS to OCTA. The designed tech-
nique was evaluated on in vivo OCTA images of human
skin. The results demonstrated that raw OCT can be

FIGURE 10 Evaluation of CS reconstruction and CGM filter on en-face images of human ear and cheek: (A) raw image of ear. (B–C)
the corresponding CS-reconstructed image and CGM-filtered image. (D) raw image of cheek. (E–F) the corresponding CS-reconstructed
image and CGM-filtered image
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reduced by a factor of 0.7 through CS-reconstruction on B-
scans while vessel structures are maintained well in the
reconstructed images. This can expediate the imaging and
consequently reduce the motion-induced artifact. More-
over, the image quality can be significantly improved by
combining CS filter with Gaussian filter and median filter.
This can potentially contribute to improve the quantitative
analysis of vasculature structures and eventually improve
the clinic utility of OCTA imaging in disease diagnosis and
treatment assessment.

In the future, the sparse sampling will be realized in
practical OCT imaging by designing the optical beam
scanning mechanism and evaluating the performance of
the technique in clinic in real time. In addition, it must
be admitted that the current method is only well suited
for vasculature image as it exhibits a sparse structure.
Thus, to extend the application of this method, the algo-
rithm needs to be improved to have a good reconstruc-
tion of non-sparse image.
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