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Abstract:   

Optical coherence tomography (OCT) is a fast and non-invasive optical interferometric imaging 
technique that can provide high-resolution cross-sectional images of biological tissues. OCT’s 
key strength is its depth resolving capability which remains invariant along the imaging depth 
and is determined by the axial resolution. The axial resolution is inversely proportional to the 
bandwidth of the OCT light source. Thus, the use of broadband light sources can effectively 
improve the axial resolution and however leads to an increased cost. In recent years, real-valued 
deep learning technique has been introduced to obtain super-resolution optical imaging. In this 
study, we proposed a complex-valued super-resolution network (CVSR-Net) to achieve an 
axial super-resolution for OCT by fully utilizing the amplitude and phase of OCT signal. The 
method was evaluated on three OCT datasets. The results show that the CVSR-Net outperforms 
its real-valued counterpart with a better depth resolving capability. Furthermore, comparisons 
were made between our network, six prevailing real-valued networks and their complex-valued 
counterparts. The results demonstrate that the complex-valued network exhibited a better super-
resolution performance than its real-valued counterpart and our proposed CVSR-Net achieved 
the best performance. In addition, the CVSR-Net was tested on out-of-distribution domain 
datasets and its super-resolution performance was well maintained as compared to that on 
source domain datasets, indicating a good generalization capability.  

Keywords: Optical coherence tomography, Complex-valued network, Super-resolution 

1. Introduction 

Optical coherence tomography (OCT) is an optical interferometric imaging technique that can 
provide high-resolution three-dimensional imaging of weak-scattering biological tissues [1]. 
Over the past decades, many efforts have been made to translate OCT into diagnostic technique 
in various clinics, such as ophthalmology [2, 3], cardiology [4, 5], and dermatology [6, 7]. The 
success of OCT is mainly attributed to its good depth-resolving capability without physical 
depth scanning, which is usually delineated with axial resolution. A higher axial resolution 
allows for better capturing micro-structure features, which provides more detailed insights into 
the samples. Therefore, increasing the axial resolution of OCT is continuing to receive research 
efforts.  

The axial resolution of an OCT ( z ) is determined by the center wavelength ( c ) and 

bandwidth (  ) of the light source as illustrated by the equation: 22ln 2 /cz      . Thus, 

increasing the spectral bandwidth of OCT light source helps obtain a better axial resolution. 
For example, Leitgeb et al. developed an ultrahigh resolution (UHR)-OCT with an axial 

Page 1 of 15 AUTHOR SUBMITTED MANUSCRIPT - PMB-115560.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



resolution of ~2.5 μm in tissue by employing a broad bandwidth Titanium:sapphire laser with 
a full-width-at-half-maximum of 120 nm centered at 800 nm [8]. Similarly, Werkmeister et al. 
used a similar laser to obtain an axial resolution of ~1.2 μm on human cornea [9]. However, the 
use of Titanium:sapphire laser leads to a significantly increased system cost. According to the 
equation above, the axial resolution is proportional to the central wavelength of OCT light 
source and consequently can be improved by employing a short-wavelength light source, e.g., 
visible light [10, 11]. Chong et al. designed a multi-functional fiber-based visible-light (Vis)-
OCT for human retinal imaging with an axial resolution of <2 μm in tissue [12]. Pi et al. 
presented a fiber-based Vis-OCT with an axial resolution of ~1.2 μm which allows for 
quantifying the thickness of large vessel walls in the chicken embryo [13]. However, Vis-OCT 
usually suffers from a reduced imaging depth than conventional near-infrared OCT for the 
higher scattering property of visible light in tissue.  

In recent years, deep learning has been extensively applied to realize super-resolution 
optical imaging [14]. For example, Ozcan et al. demonstrated a superb performance of super-
resolution in optical microscopy [15], scanning electron microscopy [16], and fluorescence 
microscopy [17]. Particularly, for OCT, deep learning has been utilized for developing axial 
super-resolution OCT. Huang et al. proposed a generative adversarial network (GAN) based on 
enhanced super-resolution GAN (ESRGAN) [18] to denoise and upscale OCT B-scan images 
(super-resolution) [19]. The semi-supervised deep learning approach was utilized for a similar 
purpose by using a dataset of paired noisy images [20]. This approach overcomes the drawback 
of supervised networks, i.e., the requirement of low quality-high quality pairs. However, down-
sampling OCT B-scan image only blurs the structures and cannot mimic axial resolution 
degradation caused by the reduced spectral bandwidth of light sources [21]. Hence, the 
upscaling process will probably not be applicable to generate super-resolution OCT image from 
low depth resolution image. Residual-in-residual dense block (RRDB) network [18] was 
employed to obtain axial super-resolution OCT image from the truncated spectra [21]. Liang et 
al. reported the use of conditional GAN to enhance the axial resolution of OCT image 
accompanied with a good recovery of realistic speckle [22]. Furthermore, deep learning has 
also been applied to OCT lateral super-resolution. For example, GAN was utilized for 
refocusing OCT en-face images by mapping defocused image onto focused image [23]. Note 
that OCT image reconstruction is typically obtained by Fourier-transforming of the interference 
spectra with the resulted image being complex-valued. However, the super-resolution methods 
based on deep learning above are implemented with OCT image intensity while the phase 
information is ignored, even though the phase of an image can provide structural information 
[24, 25]. Theoretically, complex-valued network is superior against its real-valued counterpart 
by fully utilizing both amplitude and phase [26]. Furthermore, complex-valued networks are 
advantageous in easy optimization, fast learning, and noise-robust memory mechanisms [27-
29]. It has been successfully applied to achieve super-resolution for Terahertz imaging [30], 
hyperspectral imaging [31], and millimeter-wave imaging [32].  

In this paper, to the best of our knowledge, we are the first to propose a complex-valued 
network, namely, complex-valued super-resolution network (CVSR-Net) for realizing axial 
super-resolution of OCT imaging. CVSR-Net utilizes local residual connections, global 
residual connections, channel concatenation, and dense connections to extract the complex-
valued image features and learn the mapping of low-resolution image onto high-resolution 
image. The loss function was specially designed by summing weighted Charbonnier loss and 
multiscale structural similarity. The CVSR-Net was evaluated on three OCT datasets and 
spectral truncation was employed to produce low axial resolution image. To show the 
advantage of complex-valued network, comparisons were conducted among seven super-
resolution networks and their real-valued counterparts. The results demonstrate that the 
complex-valued network can super-resolve images with more realistic speckles and structures 
than the real-valued network and the CVSR-Net achieved the best performance. Next, the 
CVSR-Net and its real-valued counterpart RVSR-Net were tested on two micro-OCT datasets. 
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The results show that the CVSR-Net can restore axial resolution well from the largely truncated 
spectra with better image metrics than the RVSR-Net on all the datasets. Last, the generalization 
ability of the CVSR-Net was evaluated by testing the model trained with the source-domain 
dataset (ex vivo micro-OCT images of swine esophagus) on out-of-distribution domain datasets 
(ex vivo micro-OCT images of swine cornea and in vivo swept-source OCT images of human 
retina). The CVSR-Net appeared to have a good generalization capability.  

The main contributions of this work are summarized as follows: 
1. We developed a complex-valued deep learning network for the first time to achieve axial 

super-resolution OCT which was demonstrated to be superior to real-valued deep learning 
network. The CVSR-Network is able to super-resolve fine structures by extracting features 
from both amplitude and phase of OCT signals. 

2. We demonstrated the superiority of the complex-valued deep learning network against 
its real-valued counterpart on several prevailing super-resolution networks. The complex-
valued networks can super-resolve images with more detailed structures than the corresponding 
real-valued networks. Our proposed network achieved the best performance among all those 
evaluated complex-valued and real-valued networks. 

3. The good generalization capability of the CVSR-Net was demonstrated by testing the 
model trained with the source-domain dataset on out-of-distribution dataset (cross tissue/cross 
system).  

2. Methods 

2.1 Data acquisition and image pre-processing 

Two datasets acquired by a micro-OCT prototype system [33, 34] and one dataset acquired by 
a home-built 1060 nm swept-source OCT system were included in this study, including four ex 
vivo volumetric images of swine esophagus from four swine samples, four in vivo volumetric 
images of swine cornea from four swines, and four in vivo volumetric images of human retina 
images from one human subject. This study was approved by the ethics review board of The 
First Affiliated Hospital of Soochow University and abided by the tenets of the Declaration of 
Helsinki (clinical trial registration number: ChiCTR1800014446). The size of each volumetric 
image from the micro-OCT system and the swept-source OCT system is 1024×1024×512 and 
512×1000×500 (A-scan×B-scan×C-scan), respectively. The pixel size of the image from the 
micro-OCT system and the swept-source OCT system is 0.85×1.53 µm and 10×7.4 µm 
(lateral×axial), respectively. The OCT image reconstruction comprises the following steps: (1) 
reference spectrum subtraction, (2) k-linearization (exclusively for micro-OCT), (3) spectrum 
windowing with a Hanning function, (4) dispersion compensation, and (5) fast Fourier 
transform (FFT).  

To simulate low axial resolution OCT images, the raw spectrum was truncated using a 
Hanning window with a size smaller than the spectrum length, e.g., quarter or half of the 
spectrum length. Note that the axial resolution of OCT imaging is inversely proportional to the 
spectral bandwidth of the light source and thus tuning the window width can effectively 
simulate the use of narrow band light source to obtain low axial resolution of OCT imaging. In 
comparison, downsampling can only degrade the digital resolution instead of the optical 
resolution. The truncated spectrum was zero-padded to make up the loss due to the truncation. 
Then, a complex-valued OCT image was obtained by FFT, called low-resolution (LR) image. 
The OCT image produced from the non-truncated spectra was taken as high-resolution (HR) 
image. LR and HR images were used as the input and ground truth (GT) of the deep learning 
network, respectively, for training, validation and testing. Due to the limitation of GPU memory, 
the original LR and GT images were randomly cropped to be 300 × 300 pixels. For each dataset, 
three volumes were taken for training (900 images) and validation (100 images) and one volume 
was used for testing (100 images) to ensure that they are independent and the training process 
is blind to the validation and testing process. The models for different types of tissues were 
trained separately. 
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2.2 Complex-valued network architecture 
A) Complex-valued convolution layer 
To perform the convolution in complex domain, for a complex-valued input image I x iy   

and a complex-valued convolution kernel W A iB  , the complex-valued convolution 
(ℂConv) can be expressed as ( ) ( )W I A x B y i B x A y         . The matrix notation of 

this equation is: 

 
( * )

* .
( * )

W I A B x

W I B A y

      
          

 (1) 

This complex-valued convolution layer can be realized by utilizing two real-valued 2D 
convolution layers in Pytorch. 
B) Complex-valued activation 
Complex-valued activation can be obtained by splitting the activation function [26, 35], and 
then conducting the activation by adopting the real-valued activation. Thus, the complex-valued 
ReLU (ℂReLU) is given by: 
 ReLU( ) ReLU( ( )) ReLU( ( )),z z i z     (2) 

where ReLU(·) is the real-valued ReLU as follows: 

 
: 0

ReLU( ) .
0 :

I if I
x

otherwise

 
 


 (3) 

C) Complex-valued super-resolution network architecture 
Figure 1 shows the network architecture of our proposed CVSR-Net. The architecture was 
inspired by Residual Dense Network (RDN) [36, 37] and Residual Network (ResNet) [38]. The 
CVSR-Net consists of a shallow feature extraction part, a deep feature extraction part, and a 
final reconstruction part. 

 
Fig. 1. The network architecture of the CVSR-Net. 

In the shallow feature extraction part, two ℂConv layers with a kernel size of 3, 64 channels 
and a stride size of 1 learn the low-level features of the image. The features extracted by the 
first ℂConv layer are connected to the reconstruction part to achieve a global residual learning. 
This not only helps transfer the low-level features to the final image, but also avoids learning a 
complicated mapping of two images [39, 40]. 
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The deep feature extraction comprises four CVSR blocks and a channel concatenation layer. 
As shown in Fig. 1, the basic unit in the CVSR block is built as the residual block in EDSR 
[41]. The two residual blocks are utilized to extract the high-level features. The red, orange, 
and green curves denote dense connections as used in DenseNet [36]. Therefore, the feature-
maps in the CVSR block can be fully used and fused by the dense connections. Next, the feature 
channel is recompressed to 64 by a 1×1 ℂConv layer. 

The multi in Fig. 1 means that the feature-maps are multiplied by a residual scaling factor 
to make the training process more stable [42]. Before the feature-map is transferred to the next 
CVSR block, the input feature-map is added with the local residual learning to reduce the 
degradation and improve the learning ability of the network [43, 44]. The feature-maps 
produced by four CVSR blocks are concatenated at the end of the deep feature extraction part 
to fuse the features at various levels. 

Finally, the 1×1 ℂConv layer compresses the channel number of the feature from 256 to 64, 
and the final image can be generated by two ℂConv layers with a kernel size of 3. Note that the 
output of the proposed CVSR-Net is in complex-value domain. To conduct the backpropagation 
and visualize the image, the amplitude of the output is utilized. 

2.3 Quantitative evaluation 

To evaluate the performance of our proposed method, three commonly used image quality 
metrics were employed: peak signal-to-noise ratio (PSNR), structural similarity (SSIM) index, 
and learned perceptual image patch similarity (LPIPS) [40, 45, 46]. PSNR can reflect the pixel-
wise difference between two images and is defined as follows: 

 
2

10
2

1

( )
PSNR 10log ( ),

1
( ( ) ( ))

N

GT
i

max I

I i I i
N 




 (4) 

where I is the processed image, e.g., LR image or SR image, and IGT represents the GT image.  
However, PSNR cannot completely depict the image resolution enhancement as only pixel-

wise difference is considered, and consequently an individual use of PSNR may not be reliable 
[40]. Therefore, SSIM was employed to provide a good evaluation of the perceptual similarity. 
SSIM is calculated by incorporating luminance, contrast, and structure of two images as defined 
in the following equations: 
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where l , c , and s  represent luminance, contrast, and structures, respectively; I and 
GTI   

are the mean pixel values of the processed image and the GT image, respectively; I and 
GTI  

represent their standard deviations; 
GTII is the covariance. The constants- 1C , 2C , and 3C  are 

0.01, 0.03 and 0.015, respectively.  ,  , and   are set to be 1. Then, SSIM can be obtained 

according to the following formula: 

 
  

   
1 2

2 2 2 2
1 2

2 2
SSIM [ ] [ ] [ ] ,GT GT

GT GT

I I II

I I I I

C C
l c s

C C
  

  

   

 


   
 (8) 
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LPIPS is another often-used metric dedicated to evaluating the perceptual similarity of two 
images. It can provide an image similarity evaluation complementary to PSNR and SSIM. 
Other than calculating the difference in the pixel level, LPIPS assesses the images based on the 
high-level features extracted by a trained CNN. More specifically, a pre-trained AlexNet was 
used in this work to extract two high-level features of the GT image and the LR image. Then, 
the Euclidean distance between two high-level features was calculated to reflect the structural 
similarity. The small LPIPS value represents the high similarity between the two images. 

2.4 Loss function 

To guide the model optimization, a loss function was designed by combining Charbonnier loss 
and multiscale structural similarity (MS-SSIM). Charbonnier loss is a variant of L1 loss and 
can handle outliers better than L1 loss. It has shown an improved performance and convergence 
as compared to L2 loss [47]. However, Charbonnier loss is a loss calculated from the pixel-
wise difference while not considering the structure variation. Consequently, this loss function 
can maximize PSNR but may lead to an over-smoothing which may smear fine structures [46]. 
To address the limitation of Charbonnier Loss, MS-SSIM was combined with Charbonnier loss 
through a linear addition. MS-SSIM is yielded from implementing SSIM at multiple scales, 
measuring the image details at different resolutions [48, 49]. Moreover, MS-SSIM loss avoids 
the selection of the standard deviation of the Gaussian filter which may influence the results 
[49]. Thus, in principle, the new loss function should be able to preserve the pixel intensity well 
(Charbonnier loss), and simultaneously increase the similarity between two images and retain 
the texture well (MS-SSIM loss function). The three loss functions above are given by: 

 2 2
Charbonnier , ,

,

1
( ) ,i j GTi j

i j

I I
hw

     (9) 

 MS-SSIM
1

[ ] [ ,] [ ]1 j jM

M

j j
j

Ml c s
 



    (10) 

 1 Charbonnier 2 MS-Sour SIM,k k      (11) 

where h  and w  are the height and width of the image, respectively;  is set to 0.003 to make 

Charbonnier loss more robust for outliers; M  means the highest scale; M , j  and j  are all 

set to be 1. 1k  and 2k  are empirically set to be 0.16 and 0.84, respectively. 

2.5 Implementation details 

In this work, three LR datasets were created with various degraded axial resolutions through 
spectrally truncating the raw data with percentages of 25%, 37.5%, and 50%. In the training 
process, all the networks were optimized by Adam optimizer with 1 0.9   and 2 0.999 
[50]. The initial learning rate was set to be 1e-3 for all the layers and decayed by a factor of 
two every twenty epochs. The batch size was two and all the networks were trained by 100 
epochs (45,000 iterations) to guarantee a convergence. Each dataset with a different axial 
resolution was trained separately to realize a mapping of a low axial resolution onto its 
corresponding high axial resolution. 

All the experiments were implemented in Python 3.7 with Pytorch 1.13.1 deep learning 
framework on a server with a 2.4 GHz Intel Xeon Silver 4210R CPU and NVIDIA RTX 3090. 

3. Results and discussion 
The proposed CVSR-Net trained with the swine esophagus dataset was first evaluated on the 
ex vivo swine esophagus test set from micro-OCT. Three low-resolution image datasets were 
created by truncating the spectra using a Hanning window function with three truncation 
percentages (truncated/non-truncated)-25%, 37.5% and 50%, corresponding to Figs. 2(a)-2(c), 
respectively. It is clearly seen that all the three images above were blurred and exhibited axially 
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enlarged speckles as compared with the GT image (Fig. 2(g)). Moreover, the image degraded 
more as the truncation percentage decreased from 50% to 25%. For example, as the truncation 
percentage decreased, the grainy speckle pattern became coarser which can be explained by the 
broadened axial coherence function due to the spectral truncation. Meanwhile, in the region of 
interest (ROI, the region framed with rectangle), the flat blood vessel’s (denoted by red arrow) 
boundary underwent a larger destruction, resulting in a decreased vessel visibility. Figures 2(d)-
2(f) describe the SR images produced by the CVSR-Net with Figs. 2(a)-2(c) as inputs, 
respectively. Overall, for all the three different truncation percentages, the images were 
recovered well to be close to the GT image. In details, similar speckle patterns and image 
sharpness were obtained. This can also be illustrated by the depth profile along the dashed red 
line in Fig. 2(g) as shown in Fig. 3. Obviously, more structure loss occurred as the truncation 
percentage increased, for example, some neighboring peaks were merged into a broad peak, 
i.e., in the region denoted by dashed rectangle. The SR image appeared to be well overlapped 
with the GT image for the truncation percentage of 37.5%. This can be further improved on the 
50% truncated data. It is also observed that the signal-to-noise (SNR) loss in the deep region 
resulting from the reduced axial resolution was restored well which was manifested as the 
increased peaks (SR images). For the truncation percentage of 25%, although peaks were not 
fully recovered, the SNR was significantly increased, indicating an axial resolution 
enhancement.  

 
Fig. 2 Super-resolution results of the CVSR-Net on ex vivo swine esophagus test set: (a)-(c) are 
LR images reconstructed from 25%, 37.5% and 50% spectrally truncated data, respectively; (d)-
(f) are the corresponding resolution-enhanced images generated by the CVSR-Net; (g) is the 
Ground truth. 

 
Fig. 3 Depth profiles along the red dashed line in Fig. 2(g) and its corresponding trajectories in 

Figs. 2(a)-2(c) and 2(d)-2(f). 
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Fig. 4 Comparisons between the complex-valued networks and the real-valued networks. C- and 
R- represents complex-valued and real-valued, respectively. The input is the image with a 25% 
spectral truncation. 

Table 1. Image metrics of the ex vivo swine esophagus test set. 

Net PSNR SSIM LPIPS 

LR Image-25% 16.83 0.3439 0.5893 

CVSR-Net 20.47 0.5404 0.4114 

LR Image-37.5% 18.77 0.5298 0.4135 

CVSR-Net 23.12 0.7648 0.2288 

LR Image-50% 20.97 0.6993 0.2779 

CVSR-Net 26.95 0.9098 0.0948 

To quantitatively assess the performance of CVSR-Net, three image metrics, including 
PSNR, SSIM and LPIPS, were calculated and summarized in Tab. 1. It is found that for all the 
three truncation percentages, PSNR, SSIM and LPIPS were significantly improved by the 
CVSR-Net. Moreover, the improvement extent appeared to be comparable among all the three 
LR images, about 3.5-6 for PSNR, 0.2-0.25 for SSIM and 0.2-0.3 for LPIPS. As a result, the 
CVSR-Net did not change the rank of the three metrics of SR images generated from the three 
datasets with different truncation percentages. The image restored from LR image-50% always 
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showed the best image quality, i.e., axial resolution, while the images from LR image-37.5% 
and LR image-25% were ranked at the second and third, respectively. This was consistent with 
the perceptual findings from the images in Fig. 2. In addition, it is worth mentioning that the 
image restored from LR image-50% had a PSNR-26.95, SSIM-0.9098, and LPIPS-0.0948, 
indicating that the enhanced image was very close to the GT image. Besides the evaluation of 
CVSR-Net for various truncation percentages, the effect of the image SNR was also 
investigated. The SNR was calculated according to the equation sSNR 20log10( / )b  , where 

s  and b  represent the mean intensity of the signal ROI (framed with red rectangle) and the 

standard deviation of the background ROI (framed with green rectangle), respectively. Two 
ROIs were chosen with high SNR in the upper red rectangle which was 18.3, 18.4, and 18.0 for 
Fig. 2(a)-2(c), respectively and low SNR in the lower red rectangle which was 6.6, 7.8, and 7.9 
for Fig. 2(a)-2(c), respectively. In the corresponding reconstructed image, the SSIM for these 
two ROIs (high SNR vs low SNR) was 0.51 vs 0.55, 0.73 vs 0.79 and 0.90 vs 0.92 for Fig. 2(a)-
2(c), respectively. It’s obvious that although the two ROIs showed a significantly different SNR, 
they exhibited a similar SSIM to the ground truth. This implies that the proposed method has a 
good robustness and the SNR’s effect may be negligible. 

Prior to further applying the CVSR-Net to OCT imaging of different biological tissues, the 
superiority of the CVSR-Net against its real-valued counterpart was verified extensively. To 
do so, a real-valued super-resolution network (RVSR-Net) was designed with the same network 
architecture as CVSR-Net. To make the comparison between the complex-valued network and 
the real-valued network fair and generic, six prevailing SR networks, including EDSR, RDN, 
RRDB network [18], ResNet [51], fast super-resolution convolutional neural network 
(FSRCNN) [52], super-resolution convolutional neural network (SRCNN) [39] and their 
complexed counterparts were included. It should be noted that the upsampling layers in the 
above networks were removed as the size of each image was kept constant in the training and 
testing processes. In addition, each network and its complex-valued counterpart were trained 
with the loss function from the original papers on the ex vivo swine esophagus dataset and all 
the training processes were conducted in the same way as mentioned in section 2.5. 

Figure 4 describes the comparisons of SR images produced by the complex-valued 
networks and the real-valued networks. The image reconstructed from 25% truncated spectral 
data was used as the input of the network. It is obvious that the images produced by both 
complex-valued networks and real-valued networks showed a similar speckle pattern and an 
image sharpness. Besides, the SR image looked smoother as compared to the GT image, 
indicating that the image reconstruction by deep learning network comes with a denoising effect 
in addition to the resolution enhancement. This may be because the noise distribution and 
intensity of the LR image and the GT image are different, and the networks fail to learn the 
noise mapping. The denoising effect makes the morphological structure more distinguishable 
in the SR image than the GT image. Among all these seven paired networks, the CVSR-Net 
showed the weakest denoising effect and consequently the generated SR images looked most 
like the GT image. In addition, the CVSR-Net achieved the best performance in reconstructing 
the blood vessel (pointed out by green arrow) in the ROI. However, it may not be easy to judge 
whether the complexed-value network performed better than the real-valued network from the 
images except the CVSR-Net and the C-EDSR.  

Therefore, PSNR, SSIM and LPIPS were computed to make an objective and reliable 
comparison between complexed-value network and real-valued network as depicted in Tab. 2. 
Each complex-valued network achieved a higher PSNR, higher SSIM, and lower LPIPS as 
compared with its real-valued counterpart. The complexed-value network’s superiority was 
more obvious in SSIM and LPIPS than in PSNR. This may be because the phase of the signal 
contains structure information of an image, and therefore by incorporating the phase in the 
learning process, the complexed-value network has a better capability to recover those high-
frequency structures. The PSNR of the image by the real-valued network was close to that of 
the complexed-valued network, indicating that both networks appeared to have a comparable 
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denoising capability. In addition, the CVSR-Net yielded the highest SSIM and the smallest 
LPIPS, demonstrating that the CVSR-Net performed better than the other networks in axial 
resolution enhancement. On the other hand, the complex-valued network also had the 
advantage of easier optimization over the real-valued network. Figure 5 shows the loss of 
training before overfitting for the CVSR-Net and the RVSR-Net. It is obvious that the CVSR-
Net converged more quickly and had a smaller loss than the RVSR-Net. 
Table 2. Comparisons of image metrics between complex-valued networks and real-valued networks on the ex 

vivo swine esophagus test set. 

Net PSNR SSIM LPIPS 

LR Image-25% 16.83 0.3439 0.5893 

CVSR-Net 20.47 0.5404 0.4114 

RVSR-Net 20.07 0.4796 0.4716 

C-EDSR 20.75 0.5061 0.4433 

R-EDSR 20.29 0.4218 0.5171 

C-RDN 20.68 0.4951 0.4699 

R-RDN 20.22 0.4233 0.5212 

C-RRDB 20.48 0.4680 0.4820 

R-RRDB 20.27 0.4297 0.5107 

C-ResNet 20.60 0.4760 0.4808 

R-ResNet 20.26 0.4287 0.5116 

C-FSRCNN 20.49 0.4604 0.5089 

R-FSRCNN 20.07 0.3988 0.5400 

C-SRCNN 20.37 0.4498 0.4835 

R-SRCNN 19.97 0.3862 0.5482 

 
Fig. 5 The loss-iteration functions of training the CVSR-Net and the RVSR-Net. 

Next, we evaluated the super-resolution performance of both the CVSR-Net and the RVSR-
Net on the in vivo swine cornea test set from micro-OCT. As can be seen in Fig. 6, the corneal 
stroma was comprised of collagen bundles (stacked-layer structures) which is delineated clearly 
in the GT image. When the spectra were truncated by 25%, it was hard to identify the collagen 
bundles in the resulted image due to the degraded axial resolution. The axial resolution 
degradation caused by the spectral truncation is well illustrated by the thickening of the edge 
of the cornea. With the increase of the truncation to 50%, the visibility of the collagen bundles 
was highly improved and however remained far lower than in the GT image. By using either 
the CVSR-Net or the RVSR-Net, the collagen bundles can be recovered with a fairly good 
visibility for all the three truncation percentages. To better visualize the difference of super-
resolution performance between the CVSR-Net and the RVSR-Net, a small rectangular region 
was chosen and zoomed in as framed with various colors (red: input, orange: output of the 
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RVSR-Net, green: output of the CVSR-Net, blue: Ground truth). It is seen that the CVSR-Net 
outperformed the RVSR-Net. In particular, the output image of the CVSR-Net beared a higher 
structural similarity to the Ground truth than that of the RVSR-Net. All the findings above were 
confirmed by the quantitative metrics, PSNR, SSIM and LPIPS as shown in Tab. 3. All the 
image metrics were significantly improved by the CVSR-Net and the RVSR-Net as compared 
to the low-resolution image. Meanwhile, the best metrics always occured on the images output 
from the CVSR-Net for each truncation percentage. For example, for the images reconstructed 
from the data with 50% spectral truncation, although the SSIM was increased from 0.6925 to 
0.8099 by the RVSR-Net, it was further improved to 0.9142 by the CVSR-Net. A similar trend 
is observed on the LPIPS which underwent a decrease from 0.2796 (LR image) to 0.1457 
(RVSR-Net) and further to 0.0616 (CVSR-Net). This indicates that for a truncation percentage 
of 50%, the CVSR-Net can restore an image that is almost identical to the GT. 

 
Fig.  6 Super-resolution results of the CVSR-Net and the RVSR-Net on the in vivo swine cornea 
test set. 

Table 3. Image metrics of the in vivo swine cornea test set. 

Net PSNR SSIM LPIPS 

LR Image-25% 13.80 0.3281 0.6194 

RVSR-Net 16.69 0.4499 0.4489 

CVSR-Net 17.19 0.5377 0.3669 

LR Image-37.5% 15.72 0.5206 0.4428 

RVSR-Net 18.51 0.6525 0.2676 

CVSR-Net 19.90 0.7701 0.1623 

LR Image-50% 17.87 0.6925 0.2796 

RVSR-Net 20.86 0.8099 0.1457 

CVSR-Net 24.11 0.9142 0.0616 

Last, the CVSR-Net was evaluated from the aspect of the generalization ability. The ex vivo 
swine esophagus dataset (37.5% spectral truncation) was taken as the source domain dataset.  
The evaluation was conducted with two different out-of-distribution domain test sets as 
illustrated in Fig. 7. One is the in vivo swine cornea test set (37.5% spectral truncation) acquired 
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by the same micro-OCT system as the source domain dataset. The other out-of-distribution 
domain test set is the in vivo human retina test set acquired by 1060nm swept-source OCT 
system. Figures 7(c) and 7(d) describe the SR images of the cornea generated by the model 
trained with the source domain dataset and the out-of-distribution domain dataset, respectively. 
It can be seen that the SR image from the out-of-distribution domain model showed a good 
recovery of the image as compared to the GT image (Fig. 7(a)) while a slightly reduced 
sharpness is observed as compared to that from the source domain model. The fine adjacent 
collagen bundles were discernible. Similar findings can be obtained from the human retina 
results. Overall, the retinal layer structure and choroid vasculature were resolved well in the SR 
image by the model trained with the source domain dataset. However, due to the reduced image 
sharpness, some edge structure was not as clear as in the SR image by the model trained with 
the out-of-distribution domain dataset, such as the upper edge of the inner limiting membrane. 
Table 4 summarizes the quantitative metrics of the images in Fig. 7. It is observed that, as 
compared to the model trained with the out-of-distribution domain dataset, SSIM dropped 
obviously for the model trained with source domain dataset for both two test sets, PSNR 
decreased for human retinal test set and LPIPS increased for swine cornea test set. This is 
reasonably acceptable as the metrics change was far less than the improvement against the LR 
images and the SR performance for out-of-distribution domain was visually close to that for 
source domain. The results demonstrate that the proposed CVSR-Net has a good generalization 
capability and can be potentially used to super-resolve unseen OCT data.  

 
Fig. 7 Generalization performance of the CVSR-Net: (a) and (e) are the GT images of the in vivo 
swine cornea dataset and the in vivo human retina dataset respectively; (b) and (f) are the LR 
images; (c) and (g) are the SR images generated by the model trained with their respective source 
domain datasets; (d) and (h) are the SR images generated by the model trained with the ex vivo 
swine esophagus dataset. The LR images are created by the 37.5% spectral truncation. 

Table 4. Image metrics of the SR images from both source-domain and out-of-distribution domain. 

Tissue Image PSNR SSIM LPIPS 

Swine Cornea 

LR Image 15.72 0.5206 0.4428 

SR Image: source-domain 19.90 0.7701 0.1623 

SR Image: out-of-distribution domain 19.88 0.7451 0.2019 

Human Retina 

LR Image 17.68 0.3824 0.5274 

SR Image: source-domain 21.51 0.7243 0.2160 

SR Image: out-of-distribution domain 20.93 0.6883 0.2130 
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4. Conclusion 

In this paper, we proposed a complex-valued super-resolution network (CVSR-Net) to achieve 
axial super-resolution for OCT imaging. The CVSR-Net’s performance was evaluated on three 
micro-OCT datasets of various biological tissues. The results demonstrate that the CVSR-Net 
has a good capability to recover the axial resolution and the speckles from spectrally truncated 
data. Moreover, the CVSR-Net was also proven to be superior to its counterpart-RVSR-Net. 
This can be accounted for by the fact that the CVSR-Net can resolve more detailed structures 
of images by fully utilizing not only the amplitude but also the phase of OCT signals while the 
real-valued network only uses the amplitude. In addition, the superior performance of the 
complex-valued network against the real-valued network was verified on other prevailing 
super-resolution deep learning networks, including EDSR, RDN, RRDB, ResNet, FSRCNN, 
and SRCNN. Among all the complex-valued and real-valued networks, the CVSR-Net yielded 
the best super-resolution performance. Last, the CVSR-Net was proven to have a good 
generalization ability through comparing the performance of the models trained with source 
domain datasets and out-of-distribution domain datasets. Thus, it is reasonable to conclude that 
the CVSR-Net has a good potential to aid in developing axial super-resolution OCT imaging 
and may be able to help reduce the OCT system cost by using narrow-band light source while 
retaining the axial resolution. In addition, the CVSR-Net can be potentially introduced to other 
imaging techniques which can produce complex-valued image, such as magnetic resonance 
imaging. In the future, it is worth investigating the feasibility of the complexed-valued network 
to obtain a lateral super-resolution or an extended depth of focus by using low and high 
numerical aperture objectives to create paired dataset to train the network.  
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