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Optical coherence tomography (OCT) suffers from speckle 
noise, causing the deterioration of image quality, especially 
in high-resolution modalities like visible light OCT (vis-OCT). 
The potential of conventional supervised deep learning 
denoising methods is limited by the difficulty of obtaining 
clean data. Here, we proposed an innovative self-supervised 
strategy called Sub2Full (S2F) for OCT despeckling without 
clean data. This approach works by acquiring two repeated 
B-scans, splitting the spectrum of the first repeat as a low-
resolution input, and utilizing the full spectrum of the 
second repeat as the high-resolution target. The proposed 
method was validated on vis-OCT retinal images visualizing 
sublaminar structures in outer retina and demonstrated 
superior performance over conventional Noise2Noise and 
Noise2Void schemes. The code is available at 
https://github.com/PittOCT/Sub2Full-OCT-Denoising. 
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Optical coherence tomography (OCT) is a reflectance-based, 
depth-resolved, micron-resolution imaging technique that has 
become a routine imaging modality in ophthalmology 1. However, 
the speckle noise, induced by the interference of light, obscures the 
implementation of ideal axial resolution to visualize the fine details 
of bio-tissue, bringing challenges to the subsequent image analysis 
and interpretation 2. 

Conventional OCT denoising approaches typically rely on 
sparse reconstruction or frame averaging (usually >100 frames) 3-5. 
The major drawback of sparse reconstruction methods is the 
potential blurry of image, sacrificing the attainable resolution of 
OCT. Additionally, the frame averaging scheme subjects to long 
acquisition time (especially for volume averaging) and precise 
image registration, making it susceptible to eye movements and less 
practical in clinical applications 6. 

With the rapid advancement of deep learning methods, various 
networks, including both the supervised and self-/unsupervised 
strategies, have been proposed for OCT despeckling. For instance, 
Ma et al. introduced a supervised cGAN method relying on frame-
merged noise-free images for training 7. Although effective, the 
supervised methods pose a shared challenge of obtaining noise-free 
images. Recently, the self-/unsupervised methods are emerging to 

address this problem, requiring only noisy images for the training 
and processing. Lehtinen et al. proposed a Noise2Noise (N2N) 
approach to restore images by using two independent observations 
of the same scene to estimate the real structures 8. Additionally, 
blind-spot schemes such as Noise2Void (N2V) used only one 
observation per scene by strategically masking the central pixel of a 
patch during training, treating the masked central pixel as the target 
for the network 9, 10. However, as gradient information is 
backpropagated only for the masked pixels, N2V suffers a 
compromised enhancement to N2N. Nevertheless, performance of 
self-/unsupervised methods is usually less optimal to supervised 
ones.  

Visible light OCT (vis-OCT) is an emerging modality with higher 
scattering contrast and improved axial resolution than standard 
near-infrared OCT (NIR-OCT) 11. These benefits enable the 
visualization of retinal fine structures in inner plexiform layer and 
outer retinal bands 12, 13. However, the strong speckle noise 
undermines these advantages, making the challenging frame 
averaging process an essential procedure for vis-OCT. Fortunetaly, 
attempts are emerging to develop deep learning despeckling 
method for vis-OCT. Notably, Fan et al. employed N2N strategy to 
reduce noise in Fibergrams 14. Ye et al. achieved denoising in the 
proposed DenoiSegOCT framework using N2V 15.  

Recognizing the need for effective and robust self-supervised 
OCT denoising solutions without clean data, we proposed an 
innovative Sub2Full (S2F) strategy in this study. Building upon the 
strengths of N2N (we choose N2N here as OCT routinely acquires at 
least two repeated B-scans for applications like OCT angiography), 
it works by generating a low-resolution (LR) image for expanded 
mapping to multiple underlaying high-resolution (HR) images, and 
thus increases the possibility to converge to the true clean image. 
The S2F utilizes the sub-band image of the first repeated B-scan (S-
R1) as the LR input, while setting the full spectrum image of the 
second repeated B-scan (F-R2) as the HR target for the network. We 
showed that the network powered with S2F strategy achieved 
superior performance over conventional N2N and N2V schemes, 
allowing identification of sublaminar structure of outer retina in 
single B-scan frame without averaged clean data in vis-OCT. 
Although validated in vis-OCT with N2N, it should be noted that S2F 
strategy can potentially be applied to all OCT types and integrated 
with various schemes for improved denoising performance.  



To delve into the principles of the proposed S2F scheme, it is 
essential to understand the mechanism of traditional supervised 
and self-/unsupervised deep learning denoising methods. 
Considering speckle noise, reflectance of OCT B-scan image can be 
expressed by 𝑦 = 𝑥 + 𝑛  where clean image 𝑥  is corrupted by a 
zero-mean independent speckle noise 𝑛 . Therefore, the endeavor 
of supervised denoising method is to minimize the discrepancy 
between the noisy input 𝑦  and the corresponding clean target 𝑥 
through Eq. (1): 

𝔼[∥ 𝑓 (𝑦 ) − 𝑥 ∥ ] = 𝔼[∥ 𝑓 (𝑦 ) ∥ − 2𝑥 𝑓 (𝑦 ) +∥ 𝑥 ∥ ], (1) 

where ∥∙∥  denotes the L2 norm, and 𝜃 is the trainable parameters 
of a network 𝑓, and 𝔼 denotes the expectation. Since 𝔼[∥ 𝑥 ∥ ] is a 
constant, the network training becomes the searching process for 
an optimal solution of 𝜃 using Eq. (2): 

arg min 𝔼[∥ 𝑓 (𝑦 ) ∥ − 2𝑥 𝑓 (𝑦 )] . (2) 

For N2N method, there are two repeated B-scans acquired from 
the object and the second repeated image can be expressed as 𝑦 =
𝑥 + 𝑛 . Similar to Eq. (1), the two independent observations (B-
scan image) serve as noisy input and corresponding noisy target in 
Eq. (3), respectively: 

𝔼[∥ 𝑓 (𝑦 ) − 𝑦 ∥ ] = 𝔼[∥ 𝑓 (𝑦 ) − 𝑥 − 𝑛 ∥ ]

= 𝔼[∥ 𝑓 (𝑦 ) − 𝑥 ∥ +∥ 𝑛 ∥

−2𝑛 (𝑓 (𝑦 ) − 𝑥)]

= 𝔼[∥ 𝑓 (𝑦 ) ∥ − 2𝑥 𝑓 (𝑦 ) +∥ 𝑛 ∥

+2𝑛 𝑥] − 2𝔼[𝑛 ]𝔼[𝑓 (𝑦 )],

(3) 

where 𝔼[∥ 𝑛 ∥ + 2𝑛 𝑥] is a constant scalar and 𝔼[𝑛 ] is zero as 
the noise is zero-mean. Hence, the optimization solution of 𝜃 in N2N 
is determined by arg min 𝔼[∥ 𝑓 (𝑦 ) ∥ − 2𝑥 𝑓 (𝑦 )], similar to 
the supervised method with clean image. As long as the noise is 
zero-mean and independent, optimization of N2N can ideally 
converge to the same solution of supervised training even if the 
noise distribution in two observations changes. However in reality, 
N2N cannot achieve results comparable to supervised methods 
unless trained on an infinitely large dataset 8. As illustrated in Fig. 
1(a), when the resolution of the input R1 and the target R2 is similar, 
the gradient tends to point the target (denoted by a blue arrow) 
with a 1:1 mapping, while a single observation of the object cannot 
encapsulate the real scene (real target).  

Inspired by the fact of unexpected denoising effect 16, 17 in OCT 
super-resolution studies, and therefore output fuzzy images 18, we 
realized that a single low-resolution (LR) image might have multiple 
plausible explanations for the high-resolution (HR) image. Here, we 

proposed the Sub2Full strategy by employing LR images obtained 
from splitting the spectrum of R1 while using high-resolution (HR) 
images of R2 as the target, taking advantage of the 1:N mapping for 
searching the optimal solution in denoising methods. As shown in 
Fig. 1(a), the 1:N mapping will force the gradient to propagate in the 
direction of each plausible explanation (denoted by gray dashed 
arrows), ultimately achieving improved optimization of pointing to 
the real target. The framework of the Sub2Full strategy is 
summarized in Fig. 1(b) and described as below, i) acquiring two 
repeated B-scans from the same object, ii) reducing the resolution 
of R1 by multiplying the spectrum with a Gaussian window, iii) 
feeding the resulted S-R1 images into the network, with the target 
set as the full spectrum images of second repeat  F-R2, iv) using the 
L2 norm, which is typically used to suppress zero-mean speckle 
noise, to minimize the distance between the prediction and the 
target. It should be noted that for each B-scan, more than one sub-
band can be obtained by varying the center wavelength of Gaussian 
window and be incorporated in different iterations of training 
process for improved spatial perspectives and boarder range of 
information. 

To evaluate the performance of S2F scheme, vis-OCT retinal 
scans were acquired in brown Norway rats using a custom-built 
prototype 6. The system has a full-width half-maximum bandwidth 
of 90 nm from 510 to 610 nm, operated at a 50 kHz A-line sampling 
rate. Each volume contains 500 A-lines per B-scan, 2 repeated 
frames for each B-scan, and 500 B-scans in total. The interferogram 
of each scan was recorded by a line scan camera (Basler spl4096-
140km) and further processed in MATLAB to resolve the OCT 
images with split spectrum or full spectrum. Ethics approval for the 
protocols was obtained from the Institutional Animal Care and Use 
Committee (IACUC) of the University of Pittsburgh.  

To make a fair comparison, classic U-Net was used as the 
backbone architecture for all models in this paper 8. For training and 
validation, 1200 B-scans from four OCT volumes were selected. The 
other (n=15) OCT volumes acquired at different retinal regions and 
animals were used for testing. In S2F, the 1200 noisy input S-R1 
images were generated from 400 B-scans in the first repeat with 
spectral windows of 50% bandwidth of the full spectrum centered 
at short, medium, and long wavelength. The corresponding F-R2 
images were employed as the noisy target. To avoid over-fitting, we 
divided the dataset with a ratio of 4:1 for network optimization and 
validation. The experiments were implemented in Python 3.7 with 
Pytorch 1.13.1 platforms using INTEL i9-13900K CPU and NVIDA 
RTX 3080 Ti GPU. We used a batch size of 2 and Adam optimizer for 

 

Fig. 1. (a) Schematic diagram of super-resolution denoising effect. (b) Framework of the proposed Sub2Full denoising scheme. The Gaussian window 
was used to split the spectrum and generate low-resolution sub-band images. 



training with an initial learning rate of 1e-3. All models were trained 
by 200 epochs to ensure convergence.  

Fig. 2(a) showed an enhanced B-scan by S2F. In contrast to the 
raw and merged B-scans in Fig. 2(b), the strong speckle noise was 
significantly suppressed by S2F, allowing better distinction of blood 
vessel and retinal ganglion cell (RGC) axon bundles from 
neighboring retinal tissue. Through visual inspection, the S2F 
demonstrated superior performance than the N2N in Fig. 2(c) and 
N2V in Fig. 2(d) that the image by N2N exhibited excessive granny 
appearance in outer retina while that by N2V had checkerboard 
artifacts attributed to blind-spot scheme. The visibility of retinal 
layers and boundaries, especially the external limiting membrane 
(ELM), was greatly improved in S2F. More importantly, multiple 
sublaminar structures in outer retina, or more specifically, the outer 
segment (OS) layer and the RPE layer, were identified, which is 
unique for S2F when compared to other models.  

To clarify the identified outer retinal sublaminar structures, we 
corelated the enhanced vis-OCT images (Fig. 3(a)) to a diagram of 
the outer retina (Fig. 3(b), reproduced from 19 with permission), as 
well as transmission electron microscopy (TEM) images obtained 
from the same species (Fig. 3(c), reproduced from 20 with 
permission). In vis-OCT image, a noticeable gradient increase of 
reflectance from basal to distal was observed for the OS, which 
should be attributed to the continuous renewal process of 

photoreceptor outer segments 21. Corresponding to the diagram 
and TEM images, the bright sub-layer positioned adjacent and 
beneath to the OS should be the RPE microvilli (mv). The following 
dark sub-layer should be the RPE melanin (ml) granules as its weak 
reflectance could be explained by the strong light absorption of the 
melanin to protect the cell damage from photosensitized oxidations 
by absorbing excessive light. The two bottom layers represented 
the RPE mitochondria (mc) and basal infoldings (bi), respectively. 
The good correlation between vis-OCT and TEM, as well as existing 
knowledge, indicated that restoration achieved by S2F not only 
improved the general appearance of the retinal images but also 
resolved critical sublaminar features that can only be appreciated 
with TEM, providing a comprehensive and faithful representation 
of the retinal structures. 

Next, to quantitatively evaluate the denoising performance, 
three image metrics including signal-to-noise ratio (SNR), contrast-
to-noise ratio (CNR), and variance (VAR) were employed: 

𝑆𝑁𝑅 = 20 log(𝐼 /𝜎 ) , (4) 

𝐶𝑁𝑅 =
1

𝑛
10 log |𝜇 − 𝜇 |/ 𝜎 − 𝜎 , (5) 

𝑉𝐴𝑅 = |𝐼 , − 𝜇 | , (6) 

where 𝐼 ,  represents the pixel value at the i-th row and j-th column 
of the denoise image with 𝐼  the maximum pixel value of the 
denoised image and 𝜇  the mean of the whole image. The 𝜇  and 𝜎  
denote the mean and the variance of the i-th selected structure 
region while the 𝜇  and 𝜎  represent the mean and the variance of 
the background region. Higher SNR and CNR values, along with 
lower VAR values, indicate higher quality of the images.  

The comparison was conducted on 30 randomly selected 
images from the volumes that were previously unseen during 
training. Three regions of interest in RGC axon, IPL, and outer retina 
(light green box in Fig. 2) and one background region (orange box 
in Fig. 2) were used for metric calculations. The results were 
summarized in Table. 1. Consistent with visual inspection, S2F 
significantly outperformed other methods in all metrics (marked 
with bold font in Tab. 1), indicating significant enhancement of 

 

Fig. 3. (a) The zoomed outer retina region in the rat retinal image 
denoised by S2F. (b) Diagram of the outer retina. (c) Histology image of 
rat retina.  

 

Fig. 2. Comparison of different methods in despeckling rat retinal vis-OCT images. (a) The results of S2F scheme. (b) The left part is the single B-scan 
image, and the other is the merged (N=2) B-scan image. (c)-(d) The results of N2N and N2V scheme, respectively. The zoomed region framed with a 
light blue rectangle in each B-scan image is shown below. One background region framed with an orange rectangle and three structure regions with 
light green rectangles were selected for metric calculation. RGC axon, retinal ganglion cell axon bundles; ELM, external limiting membrane; EZ, ellipsoid 
zone; OS, outer segment; RPE, retinal pigment epithelium. 



image contrast while maintaining low noise levels. Additionally, S2F 
also achieved the fastest convergence speed to obtain the results.  

Table 1. Quantitative comparison of all models 
 SNR  CNR  VAR (1e10) Training speed  

R1 32.55 1.61 5.67 - 
Merged 35.55 2.24 4.84 - 

S2F 58.43 5.44 2.98 25 epochs 
N2N 53.78 3.67 3.87 101 epochs 
N2V 51.05 4.91 3.58 56 epochs 

Furthermore, we varied Gaussian window bandwidth to 
observe the effect on S2F performance. We conducted the 
comparison on five different bandwidths (10%, 25%, 50%, 75%, 
and 90% percentage of the raw spectrum) (Fig 4). More noticeable 
graininess and lower layer contrast were exhibited in the denoised 
images with larger bandwidth, which can be anticipated because 
the larger bandwidth, the higher structural similarity of the 
generated LR image to the full-spectrum HR image, thus failed in 
achieving the 1:N mapping with poorer denoising performance. 
With 90% or larger bandwidth, the S2F was almost deteriorated to 
the traditional N2N method. However, a shorter bandwidth (such 
as 10% bandwidth) also caused negative effects for the denoising. 
For example, oversmoothed and unrealistic RGC axon bundles 
(dashed box 1) and axial banding artifact (dashed box 2) emerged. 
In addition, the shadow of blood vessel (dashed box 3) almost 
disappeared in the denoised image. This phenomenon can be 
attributed to the over degradation of the resolution as the most 
important fine structures were lost in the sub-band image and the 
corresponding explanations may deviate from the real image. 
Nevertheless, the sublaminar structure of outer retina (dashed box 
4), as a kind of high-frequency feature, was well maintained with 
clear and continuous visualization.  

Initiated by the fast convergence and self-supervise feature of 
S2F, we tested its performance in a unique pipeline, i.e., using 
limited frames (10%, N=50) from a single volume to train and apply 
the dedicated model within that volume. Surprisingly, the 
performance did not deteriorate (SNR: 54.37 vs 54.39, CNR: 5.49 vs 
5.34, VAR(1e10): 3.58 vs 3.49), and even better from visual 
inspection, when compared to that by the generalized model. 
Additionally, the training took less than 1 min to converge, making 
it practical for real-time applications to be integrated with OCT 
processing modules and be adaptive to various OCT scans quality in 
the future. 

In summary, a self-supervised OCT despeckling method named 
Sub2Full was proposed. This approach works by utilizing the 1:N 
mapping of LR images to HR images from two independent 
observations. The S2F strategy outperformed two typical self-
supervised schemes, N2N and blind-spot-based N2V, in denoising 
and preserving structures. Although validated with U-net and N2N 
in vis-OCT, the S2F strategy should also work in other network 
architectures, deep learning schemes, and OCT systems. We 
envision S2F as a promising solution for effective and practical OCT 
denoising to unlock new features and hope to apply it for 
commercialization and clinical utilization in the near future. 
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